March 13, 2014 by  

tufailIn physics, a wave is a disturbance or oscillation that travels through space and matter, accompanied by a transfer of energy. Wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium—that is, with little or no associated mass transport. They consist, instead, of oscillations or vibrations around almost fixed locations. Waves are described by a wave equation which sets out how the disturbance proceeds over time. The mathematical form of this equation varies depending on the type of wave.
There are two main types of waves. Mechanical waves propagate through a medium, and the substance of this medium is deformed. The deformation reverses itself owing to restoring forces resulting from its deformation. For example, sound waves propagate via air molecules colliding with their neighbors. When air molecules collide, they also bounce away from each other (a restoring force). This keeps the molecules from continuing to travel in the direction of the wave.

The second main type of wave, electromagnetic waves, do not require a medium. Instead, they consist of periodic oscillations of electrical and magnetic fields generated by charged particles, and can therefore travel through a vacuum. These types of waves vary in wavelength, and include radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.

Further, the behavior of particles in quantum mechanics are described by waves, and researchers believe that gravitational waves also travel through space, although gravitational waves have never been directly detected.

A wave can be transverse or longitudinal depending on the direction of its oscillation. Transverse waves occur when a disturbance creates oscillations perpendicular (at right angles) to the propagation (the direction of energy transfer). Longitudinal waves occur when the oscillations are parallel to the direction of propagation. While mechanical waves can be both transverse and longitudinal, all electromagnetic waves are transverse.

A single, all-encompassing definition for the term wave is not straightforward. A vibration can be defined as a back-and-forth motion around a reference value. However, a vibration is not necessarily a wave. An attempt to define the necessary and sufficient characteristics that qualify a phenomenon to be called a wave results in a fuzzy border line.

The term wave is often intuitively understood as referring to a transport of spatial disturbances that are generally not accompanied by a motion of the medium occupying this space as a whole. In a wave, the energy of a vibration is moving away from the source in the form of a disturbance within the surrounding medium (Hall 1980, p. 8). However, this notion is problematic for a standing wave (for example, a wave on a string), where energy is moving in both directions equally, or for electromagnetic (e.g., light) waves in a vacuum, where the concept of medium does not apply and interaction with a target is the key to wave detection and practical applications. There are water waves on the ocean surface; gamma waves and light waves emitted by the Sun; microwaves used in microwave ovens and in radar equipment; radio waves broadcast by radio stations; and sound waves generated by radio receivers, telephone handsets and living creatures (as voices), to mention only a few wave phenomena.

It may appear that the description of waves is closely related to their physical origin for each specific instance of a wave process. For example, acoustics is distinguished from optics in that sound waves are related to a mechanical rather than an electromagnetic wave transfer caused by vibration. Concepts such as mass, momentum, inertia, or elasticity, become therefore crucial in describing acoustic (as distinct from optic) wave processes. This difference in origin introduces certain wave characteristics particular to the properties of the medium involved. For example, in the case of air: vortices, radiation pressure, shock waves etc.; in the case of solids: Rayleigh waves, dispersion; and so on.

Other properties, however, although usually described in terms of origin, may be generalized to all waves. For such reasons, wave theory represents a particular branch of physics that is concerned with the properties of wave processes independently of their physical origin.[1] For example, based on the mechanical origin of acoustic waves, a moving disturbance in space–time can exist if and only if the medium involved is neither infinitely stiff nor infinitely pliable. If all the parts making up a medium were rigidly bound, then they would all vibrate as one, with no delay in the transmission of the vibration and therefore no wave motion. On the other hand, if all the parts were independent, then there would not be any transmission of the vibration and again, no wave motion. Although the above statements are meaningless in the case of waves that do not require a medium, they reveal a characteristic that is relevant to all waves regardless of origin: within a wave, the phase of a vibration (that is, its position within the vibration cycle) is different for adjacent points in space because the vibration reaches these points at different times.



Feel free to leave a comment...
and oh, if you want a pic to show with your comment, go get a gravatar!